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Free in-plane vibration of rectangular plates undergoing plane stress deformation is
investigated through Ritz discretization of the Rayleigh quotient. Of particular interest is the
manner in which the plate's natural frequencies and coupled longitudinal}lateral vibration
modes evolve as its length-to-width aspect ratio is varied. Vibration modes are grouped into
families or classes based on (1) common asymptotic behavior of natural frequency loci with
increasing aspect ratio, (2) re#ective symmetry of the displacement "eld about the plate's
centerline, and (3) the presence of nodal points on or o! the plate's centerline. The
applicability of the traditional strength-of-materials bending and longitudinal vibration
models for predicting the lower in-plane modes is also discussed, and the range of aspect
ratios for which those simpler models provide acceptable accuracy is quanti"ed. In-plane
twisting and higher order modes having nodal points o! the plate's centerline are not
predicted by those traditional theories, and these are also discussed in several parameter
studies.
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1. INTRODUCTION

Because of the higher strain energy involved in their deformations, in-plane vibration of
plates generally occurs at substantially higher frequencies than transverse vibration. In
certain specialized applications, however, in-plane vibration can be of interest despite the
higher frequencies involved. In magnetic tape data storage, transverse vibration is generally
not an issue in path design, but in-plane vibration occurring in the kilohertz range does
have implications for actuation of the recording heads in following narrow data tracks. Also
with respect to the transportation of webs, such other materials as #exible strips of polymer,
"lm, sheet metal, and paper are positioned during their production by cylindrical guides
and rollers. For an aluminum sheet in a rolling mill, in-plane vibration in#uences the web's
surface condition at those web}roller interactions. Objectives of this investigation include
examining the manner in which the in-plane modes vary with plate's aspect ratio, and
assessing the accuracy and limitations of the traditional strength-of-materials theories
which are often used to estimate the natural frequencies.

Previous studies in the area of in-plane vibration include work by Handa [1], who
developed a new type of element for use in modelling the vibration of such plate-type
structures as the shear walls used in building construction. The element developed had more
degrees of freedom per node than previously used ones, and thus was able to facilitate
frequency and mode shape computation with greater accuracy. Also, with a view towards
computational techniques, Ovunc [2] applied the continuous mass matrix method and
presented free and forced response results for the cases of a cantilever, and of a plate having
all edges constrained. Results were presented only for those boundary conditions and
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472 K. HYDE E¹ A¸.
several speci"c values of the plate's aspect ratio. Kobayashi et al. [3] treated the in-plane
vibration of rectangular plates that are supported at four interior points, and examined the
variation of frequencies and mode shapes with respect to the locations of those supports.
The Lagrange multiplier technique was applied to constrain the plate's displacements at the
supports. Liew et al. [4}7] examined the three-dimensional vibration of rectangular
parallelepipeds and plates having arbitrary thickness through the Rayleigh}Ritz method.
Tabular data for the natural frequencies of certain symmetric and antisymmetric modes
were presented for various combinations of free and constrained boundary conditions, and
as functions of the plate's thickness or parallelepiped's aspect ratio.

Bardell et al. [8] studied the in-plane vibration of isotropic rectangular plates having
either free or fully constrained boundaries, and results were presented for the lower six
modes at two particular aspect ratios. The classi"cation of groups of modes having natural
frequencies with qualitatively similar behavior as the aspect ratio is varied was not
discussed. Larsson [9] later described detailed experimental results obtained through
in-plane modal testing of an aluminum plate. For a length-to-width aspect ratio of 2)08,
measured and predicted results for the "rst 15 mode shapes were presented, and those
measurements can provide a valuable benchmark for verifying results predicted through
analytical techniques.

In this paper, the natural frequency spectrum and vibration modes for in-plane vibration
of isotropic rectangular plates undergoing plane stress deformation is investigated. For
three prototypical sets of boundary conditions*free, constrained}free, and
constrained*natural frequencies and modes shapes are obtained through Ritz
discretization of the Rayleigh quotient. The results obtained for the free, and for the
constrained}free, geometries are discussed and compared with those obtained from the
traditional strength-of-materials theories for bending and longitudinal vibration. Adding to
the "ndings of previous investigations, natural frequency results are depicted here over
a wide range of aspect ratios in order to examine the asymptotic behavior of the di!erent
classes of modes. The ranges of aspect ratios over which the simpler theories can be applied
with "delity to the problem at hand are quanti"ed, and other classes of modes that are not
predicted within the context of the traditional theories are also identi"ed in the case studies.

2. IN-PLANE VIBRATION MODEL AND DISCRETIZATION

A rectangular plate of length a along the x-axis, width b across the y-axis, and thickness
hK@a and b is examined, where the co-ordinate system is located centrally within the plate.
Only in-plane, plane stress vibration is treated so that all loads act within the plane of the
plate, stress components p
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across the plate's thickness and are at most functions only of the in-plane co-ordinates. The
material is speci"ed to be isotropic with modulus E, the Poisson ratio l, and volumetric
mass density o.

In-plane displacements along the x and y directions are denoted by u (x, y, t) and v(x, y, t),
respectively, and in terms of them, the kinetic ¹ and potential < energies are
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where the comma-subscript notation signi"es partial di!erentiation. Through standard
application of Hamilton's principle
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(¹!<) dt"0, (3)

the equations of motion for coupled u}v motions become
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With the de"nition of the state vector w"MuvNT, 2]2 mass operator M"Diag(oh), and
sti!ness operator
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the equations of motion are compactly written in the symbolic operator form
Mw

,tt
#Kw"0. Here the underline notation signi"es either a vector or matrix quantity.

On the plate's transverse edges x"$a/2, the two conditions which must be satis"ed are
p
x
du"0 and q

xy
dv"0. Likewise, on the longitudinal edges y"$b/2, p

y
dv"q

xy
du"0.

Here p
x

and p
y
denote the normal stresses in the x and y directions, q

xy
is the shear stress,

and du and dv denote admissible in"nitesimal variations in u and v. On each edge of the
boundary, either a certain stress component or the variation of a certain displacement
vanishes, and in what follows, various combinations of free and ideally constrained edges
are considered. The term &&clamped'', as is used, for instance, in examining transverse
vibration in the traditional beam and plate theories, is speci"cally avoided since its usage
implies the imposition of di!erent boundary condition expressions on only one variable.

The model is non-dimensionalized through the de"nitions

x@"x/a, y@"y/b, u@"u/a, v@"v/b, t@"t/Jo/Ea2, (6)

and in what follows, the prime superscripts are omitted for brevity. To determine
the natural frequencies and vibration modes, the model is discretized globally through the
Rayleigh}Ritz method. With harmonic time dependence speci"ed, and in terms of the
spatial components w
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NT only of the continuous displacement "eld, Rayleigh's

quotient becomes
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where the nomenclature Sf ,fT denotes the conventional inner product, and the order of
derivatives on u and v has been lowered in the numerator following application of Green's
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theorem. The displacements in turn are approximated by the N=-term expansions
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boundary condition requirements. With opposing edges being fully constrained, sinusoids
are used as the set of admissible functions, and Legendre polynomials are used when the
opposing edges are free.

For a chosen value of N=, matrices K and M of dimensions 2N=]2N= are formed
from the M and K weighted projections of MuNW

o
vNW
o

NT as in equation (7). The eigenvalue
problem K

qN
"u2M

qN
is obtained, where the generalized co-ordinate vector is given by

q"Mc dNT, in order to provide discrete approximations to the dimensional natural
frequencies u"u/(E/oa2(1!l2))1@2 and to the coupled u}v mode shapes as reconstructed
from equation (8).

3. NATURAL FREQUENCY AND MODE STRUCTURE

Natural frequency and mode shapes are presented in the following sections for three
combinations of edge conditions: free, opposing pairs being constrained or free, and
constrained. In each case, the "rst 20 natural frequencies were calculated and relative
convergence was reached at N="110, 100, and 80 in the three cases respectively.

To benchmark accuracy of the method, natural frequencies for plates having either free or
constrained boundaries were compared with results obtained by Bardell et al. [8] for the
aspect ratios a/b"1)0 and 2)0. Those comparisons are shown in Tables 1 and 2, where
deviations are less than 2% over the "rst six modes, and over four combinations of
boundary conditions and aspect ratios.

Results for higher frequency modes were not reported in reference [8], but measured
values for the "rst 15 in-plane modes of a thin, free, aluminum plate having aspect ratio 2)08
TABLE 1

Comparison of the present predicted non-dimensional natural frequencies u* with results
reported by Bardell et al. [8]; free boundary

a/b"1)0 a/b"2)0

u* Bardell [8] Di!erence (%) u* Bardell [8] Di!erence (%)

2)301 2)321 0)9 1)938 1)954 0)8
2)471 2)472 0)1 2)927 2)961 1)2
2)471 2)472 0)1 3)238 3)267 0)9
2)589 2)628 1)5 4)702 4)726 0)5
2)971 2)987 0)5 4)752 4)784 0)7
3)501 3)452 1)4 5)178 5)205 0)5



TABLE 2

Comparison of the present predicted non-dimensional natural frequencies u* with results
reported by Bardell et al. [8]; constrained boundary

a/b"1)0 a/b"2)0

u* Bardell [8] Di!erence (%) u* Bardell [8] Di!erence (%)

3)549 3)555 0)2 4)741 4)789 1)0
3)549 3)555 0)2 6)387 6)379 0)1
4)221 4)235 0)3 6)682 6)712 0)5
5)201 5)186 0)3 7)037 7)049 0)2
5)967 5)859 1)8 7)565 7)608 0)6
6)000 5)895 1)8 8)128 8)140 0)2

TABLE 3

Comparison of the present predicted natural frequencies (u* and u/2n) with the measured
values reported by ¸arsson [9] for a free aluminum plate; E"70)3 GPa, l"0)33,

o"2674 kg/m3, a"1)023 m, b"0)493 m, and h"9)7 mm

Mode u* u/2n (Hz) Larsson [9] (Hz) Di!erence (%)

1 1)903 1608 1603 0)3
2 2)931 2477 2472 0)2
3 3)272 2765 2740 0)9
4 4)749 4014 3959 1)4
5 4)800 4057 4008 1)2
6 5)275 4459 4424 0)6
7 5)405 4568 4503 1)4
8 5)555 4695 4628 1)5
9 6)325 5346 5269 1)5

10 6)528 5517 5376 2)6
11 6)778 5728 5659 1)2
12 6)894 5826 5737 1)6
13 6)942 5867 5812 1)0
14 7)637 6455 6287 2)7
15 8)184 6917 6655 3)9
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were reported by Larsson [9]. That comparison, which is made in dimensional terms in
order to be consistent with the presentation of reference [9], is shown in Table 3. The
present results agree within 4% over the "rst 15 modes, and for 12 of the listed values, the
correlation is within 2%. Results were not presented in reference [9] for plates with any
other aspect ratio or boundary conditions.

The in-plane mode shapes involve coupled u}v motions and are classi"ed for purposes of
exposition according to symmetry of the two displacement components. The vibration
modes are termed either symmetric or antisymmetric with respect to y"0, consistent with
the convention of re#ective symmetry about the plate's longitudinal centerline. In
a symmetric mode shape S, u and v are even and odd functions, respectively, of the
transverse co-ordinate y; the converse is valid for an antisymmetric shape A. The in-plane
modes are further classi"ed according to the number and placement of nodes in x and
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y relative to the y"0 centerline. The so-called "rst order modes have nodal points
u"v"0 only on the centerline's axis, whereas higher order modes can also have o!-axis
nodes.

4. FREE BOUNDARY

Figure 1 depicts the dimensionless in-plane natural frequency spectrum for a free plate.
The frequency loci are shown over aspect ratios 1(a/b(10. The predicted values (solid
line type) are compared to the frequencies predicted on the basis of the classical
Euler}Bernoulli beam bending (dashed line type) and longitudinal rod (arrows on ordinate)
theories for larger a/b.

4.1. IN-PLANE BENDING MODES

The loci in Figure 1 for one class of modes decrease gradually with a/b for larger aspect
ratios. The mode labelled (i) in Figure 1 is representative and is the second lowest of this
class. Such vibration modes are analogous to conventional beam bending modes in terms of
their u}v displacement patterns and the asymptotic behavior of their natural frequencies
with a/b. Mode (i), depicted in Figure 2, is an antisymmetric mode, analogous to the second
Figure 1. Non-dimensional frequency spectrum (solid line type) for in-plane vibration of a free plate shown as
a function of aspect ratio. The frequencies predicted through traditional beam bending (dashed line type) and
longitudinal rod (arrows on ordinate) theories are shown for comparison at larger aspect ratios. The frequencies of
modes (i)}(iii), depicted in Figures 2}4, are indicated by the &&f'' notation.



Figure 2. Second in-plane bending mode, labelled (i) in Figure 1, for a free plate at a/b"4)5; u"2)80,
antisymmetric. (a) Longitudinal displacement contour and its lateral pro"le, (b) lateral displacement contour and
its lateral pro"le, and (c) deformed shape with &&f'' notation signifying nodal points. The nodal lines in (a) and (b)
are highlighted in bold.
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mode of a free}free beam, with motion occurring predominately in v. The longitudinal
displacement varies in a substantially linear manner with y, as seen in Figure 2(a), and the
v pro"le of Figure 2(b) has only a slight roll-o! near the edges.

In the limit a/bPR, the vibration modes in this class tend to those expected on the basis
of beam bending theory. In that case, with a and b interpreted as the beam's length and
depth, u decreases as 1/a2 and the non-dimensional value u* varies with (a/b)~1 as
indicated by the loci with dashed line type in Figure 1. For aspect ratios greater than
roughly 5)5, for instance, the frequency of the lowest in-plane mode in this class is within 5%
of the value predicted through beam bending theory. For aspect ratios greater than 8)0, the
simpler theory is accurate to within 9% of the value predicted for the second mode of this
class, mode (i).

Nodes form at the intersection of nodal lines in the u and v contours. For the case of mode
(i), all nodes lie on the centerline, and as a result, mode (i) is classi"ed as a "rst order mode.
The nth mode of this class characteristically has n#1 centerline nodes. Nodes in Figure 2(c)
form where the longitudinally oriented nodal line for u intersects the transverse nodal lines
in v. In this case, the number of nodal lines for v oriented generally transversely to the plate
(three in Figure 2) exceeds by one the number for u (two in Figure 2).

4.2. LONGITUDINAL MODES

Also in Figure 1, certain loci grow monotonically with a/b, with the mode labelled (ii)
there being representative. This family of modes is analogous to the classical longitudinal
vibration modes of a bar in terms of the u}v displacement patterns and the behavior of the



Figure 3. First in-plane longitudinal mode, labelled (ii) in Figure 1, for a free plate at a/b"4)5; u"3)13,
symmetric. (a) Longitudinal displacement contour and lateral pro"le of u, (b) lateral displacement contour and
lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points. The nodal lines in (a) and (b)
are highlighted in bold.

TABLE 4

Comparison of the present predicted non-dimensional natural frequencies u*, and estimates of
them as obtained from the ,rst two modes of the classical beam and rod models; free boundary

a/b"5 a/b"10
Free
mode u* Beam/rod Di!erence (%) u* Beam/rod Di!erence (%)

Beam 1 1)12 1)20 7 0)60 0)61 1
Beam 2 2)63 3)32 21 1)60 1)68 5
Rod 1 3)11 3)03 3 3)14 3)03 4
Rod 2 6)17 5)98 3 6)25 5)98 10

478 K. HYDE E¹ A¸.
natural frequencies at larger a/b. Shown in Figure 3, mode (ii) is the lowest of this class with
motion occurring primarily along the plate's longitudinal axis, and it has re#ective
symmetry in u relative to the y"0 axis. The u displacement pro"le shown in Figure 3(a) is
nearly constant across the plate's width, and v varies in a substantially linear manner in y.
The nth mode of this class has n nodal points that lie on the plate's longitudinal centerline,
so that in the nomenclature used here, these modes are also classi"ed as being of "rst order.
Surrounding each node, the plate undergoes local extension or contraction, with the
directions alternating at each successive node. In terms of the u and v displacement contours
for this class, the number of nodal lines for u oriented generally transversely (one in
Figure 3) exceeds by one the number for v (zero in Figure 3).

As the plate's aspect ratio grows, frequencies of modes in this class approach those
calculated on the basis of the longitudinal rod model. The circular natural frequency
decreases as 1/a. The non-dimensional frequency as used here is independent of a/b, and
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takes on the values nnJ1!l2(n"1, 2,2) as denoted by the arrows on the ordinate in
Figure 1. At a/b"10, for instance, the frequencies in Figure 1 predicted for the "rst three
modes on the basis of the classical and plane stress models di!er by some 5%, namely the

multiplicative factor J1!l2. For these lower modes, the classical theory slightly
underestimates the frequencies to the extent that lateral Poisson contraction/expansion is
neglected. At a/b"5)0 and 10)0, Table 4 compares predictions of the plane stress model
with frequency estimates as obtained from the classical beam and rod models for
corresponding modes. At a/b"5, the natural frequency u*"1)12 for the lowest bending
mode is estimated within some 7% by the classical theory, but the error grows to 21% when
the second mode is considered. Similarly, at a/b"10, the classical model estimates the "rst
two longitudinal modes to accuracies of 4 and 10% respectively.

4.3. TWISTING AND HIGHER ORDER MODES

Figure 4 depicts a mode which exists in a region between adjacent veerings of the bending
mode loci in Figure 1. In those regions, the frequencies increase steeply with aspect ratio,
and this "rst order mode is identi"ed as mode (iii) in Figure 1. This mode di!ers from
a classical bending mode to the extent that while material particles in the vicinity of a nodal
point in each case experience local rotation, here u and v are comparable in magnitude. The
transverse pro"les for u and v are shown in Figures 4(a, b), where v has substantial
cross-plate variation.

The steeper loci in Figure 1 correspond to higher order modes which have nodal points
both on and o! the plate's longitudinal centerline, and which are not predicted by the
classical one-dimensional theories. Examples of certain higher order symmetric and
Figure 4. In-plane twisting mode, labelled (iii) in Figure 1, at a/b"4)5; u"8)26. (a) Lateral pro"le of u, (b)
lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points.



Figure 5. Second order symmetric mode at a/b"4)5 for a free plate; u"13)9. (a) Lateral pro"le of u, (b) lateral
pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points.

Figure 6. Second order antisymmetric mode at a/b"4)5 for a free plate; u"23)3. (a) Lateral pro"le of u, (b)
lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points.
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antisymmetric modes are shown in Figures 5 and 6, respectively, at a/b"4)5 and above the
frequency range depicted in Figure 1. Qualitatively, these higher order modes present some
aspects of the displacement patterns in the bending, longitudinal, and twisting modes. The
mode of Figure 5, for instance, exhibits a rod-like displacement pattern along the centerline,
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but the material surrounding o!-axis nodes experiences local rotation. In Figures 5 and 6,
the cross-plate u and v pro"les have greater numbers of nodes in the transverse direction
relative to those present in the classical modes.

5. CONSTRAINED}FREE BOUNDARY

In this case, edges x"$a/2 are constrained with u"v"0, but edges y"$b/2 are
free. Figure 7 shows the plate's in-plane frequency spectrum as the aspect ratio is varied over
the range 1)a/b)10. Also shown in Figure 7 are the asymptotic frequency values
predicted on the basis of the classical strength of materials theories for bending (dashed line

type; decreasing with Ja/b) and longitudinal (arrows on ordinate; multiples of n) motions.
Table 5 shows the predictions of the plane stress model and of the classical strength of
materials rod and beam theories at a/b"5)0 and 10)0.

Groups of loci having similar trends with a/b correspond to distinct families of modes.
The class of antisymmetric modes that converges with increasing aspect ratio to the classical
bending loci is termed the "rst order bending mode set. Likewise, the symmetric modes
which approach the predictions of the longitudinal vibration model at large aspect ratios
are termed the "rst order longitudinal rod modes. Examples of each are denoted in Figure 7
by modes (iv) and (v), respectively, and the mode labelled (vi) is termed an in-plane twisting
mode. The higher order modes exhibit displacement behavior similar to that present for
Figure 7. Non-dimensional frequency spectrum for in-plane vibration of a constrained}free plate as a function
of aspect ratio (solid line type). For comparison at larger aspect ratios, the frequencies predicted on the basis of the
traditional beam bending (dashed line type) and longitudinal rod (arrows on ordinate) theories are also shown.



TABLE 5

Comparison of the present predicted non-dimensional natural frequencies u*, and estimates of
them as obtained from the ,rst two modes of the classical beam and rod models;

constrained}free boundary

a/b"5 a/b"10
Constrained}Free

mode u* Beam/rod Di!erence (%) u* Beam/rod Di!erence (%)

Beam 1 1)02 1)22 16 0)61 0)61 *

Beam 2 2)55 3)33 23 1)54 1)70 9
Rod 1 2)35 2)18 8 2)18 2)38 9
Rod 2 4)70 4)41 7 4)42 4)73 7

Figure 8. Second order symmetric mode at a/b"4 for a constrained}free plate; u"13)0. (a) Lateral pro"le of
u, (b) lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points.
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a free plate, with the exception of the number of nodes as determined by the transverse edge
constraint. Figures 8 and 9 depict two representative higher order modes which have nodal
points on, as well as o!, the plate's axis. In Figure 8, the u displacement "eld has two nodal
points across the plate's width, while v has one; the values are three and two, respectively,
for the mode shown in Figure 9.

6. CONSTRAINED BOUNDARY

The third case examined is that in which all edges of the plate are constrained against u}v
displacement, and that spectrum is shown in Figure 10. As in the previous cases, there exist
classes of modes which follow the behavior of the "rst order bending and longitudinal



Figure 9. Second order antisymmetric mode at a/b"4 for a constrained}free plate; u"19)5. (a) Lateral pro"le
of u, (b) lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points.

Figure 10. Non-dimensional frequency spectrum for in-plane vibration of a constrained plate as a function of
aspect ratio. The nearly repeated frequencies of modes (vii) and (viii), depicted in Figures 11 and 12, are indicated
by the &&f'' notation.
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Figure 11. First order antisymmetric in-plane mode, labelled (vii) in Figure 10, for a constrained plate at
a/b"4)75; u"14)70. (a) Longitudinal displacement contour and lateral pro"le of u, (b) lateral displacement
contour and lateral pro"le of v, and (c) deformed shape with &&f'' notation signifying nodal points. The nodal lines
in (a) and (b) are highlighted in bold.

Figure 12. First order antisymmetric in-plane mode, labelled (vii) in Figure 10, for a constrained plate at
a/b"4)75; u"14)72. This mode converges in frequency with mode (vii) as the aspect ratio increases. (a)
Longitudinal displacement contour and lateral pro"le of u, (b) lateral displacement contour and lateral pro"le of v,
and (c) deformed shape with &&f'' notation signifying nodal points. The nodal lines in (a) and (b) are highlighted in
bold.

484 K. HYDE E¹ A¸.



Figure 13. Second order symmetric mode at a/b"4)0; u"22)4. (a) Lateral pro"le of u, (b) lateral pro"le of v,
and (c) deformed shape with &&f'' notation signifying nodal points.

Figure 14. Second order antisymmetric mode at a/b"4)0; u"29)5. (a) Lateral pro"le of u, (b) lateral pro"le of
v, and (c) deformed shape with &&f'' notation signifying nodal points.
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modes as the constraints along the y"$b/2 edges are relaxed, but no classical theories
exist in this case for the purpose of comparisons.

As the aspect ratio increases, the natural frequencies likewise increase monotonically,
unlike the trends present for the "rst order bending and longitudinal modes with either free
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or constrained}free boundaries. At higher aspect ratios, the "rst order symmetric modes
(namely, those having displacement pattern analogous to classical longitudinal rod modes)
have the lowest natural frequencies. With increasing a/b, the constraint along y"$b/2
adds sti!ness to each class of modes. Further, pairs of loci, which for small a/b are close but
distinguishable in frequency, become asymptotically close in Figure 10 as the aspect ratio
grows. Such convergent behavior does not occur for the two other sets of boundary
conditions that were examined. An example in that regard is the pair of modes (vii) and (viii),
which are shown in Figures 11 and 12 at the aspect ratio of 4)75. These modes, having
u"14)70 and 14)72, respectively, form the "rst pair to coalesec in frequency, and their
displacement patterns would perhaps be described as being most similar to bending modes
where material adjacent to each node undergoes local rotation. Examples of two higher
order modes are shown in Figures 13 and 14 at a/b"4)0, where both transverse pro"les and
displacement contours are shown.

7. SUMMARY

The natural frequencies and mode shapes for in-plane vibration of a plate are examined
through Ritz discretization of the Rayleigh quotient for three representative sets of
boundary conditions. Parameter studies over a range of aspect ratios highlight di!erent
classes of modes, the lower of which in some cases correspond to the traditional bending
and longitudinal vibration theories. The parameter studies in aspect ratio a/b are useful to
judge the geometries for which the classical theories can be applied to acceptable levels of
accuracy, at least for the lower in-plane modes with free or constrained}free conditions. For
instance, at a/b"5)0 for a constrained}free plate, the strength-of-materials theories predict
the "rst bending and longitudinal modes to within accuracies of 16 and 8%. Aside from the
continuous transition or &&morphing'' of modes with aspect ratio, other results include the
identi"cation of several di!erent classes of modes based on symmetry and the character of
displacement patterns near nodal points, and the description of certain higher order modes
that are not predicted on the basis of the classical models.
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